Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Communication-efficient second-order Newton-type approach for decentralized learning

Krouka, Mounssif; Elgabli, Anis; Issaid, Chaouki Ben; Bennis, Mehdi (2023-05-12)

 
Avaa tiedosto
nbnfi-fe20231003138617.pdf (955.2Kt)
nbnfi-fe20231003138617_meta.xml (36.67Kt)
nbnfi-fe20231003138617_solr.xml (32.37Kt)
Lataukset: 

URL:
https://doi.org/10.1109/WCNC55385.2023.10118646

Krouka, Mounssif
Elgabli, Anis
Issaid, Chaouki Ben
Bennis, Mehdi
Institute of Electrical and Electronics Engineers
12.05.2023

M. Krouka, A. Elgabli, C. B. Issaid and M. Bennis, "Communication-Efficient Second-Order Newton-Type Approach for Decentralized Learning," 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 2023, pp. 1-7, doi: 10.1109/WCNC55385.2023.10118646

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/WCNC55385.2023.10118646
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe20231003138617
Tiivistelmä

Abstract

In this paper, we propose a decentralized Newton-type approach to solve the problem of decentralized federated learning (FL). Notably, our proposed algorithm leverages the fast convergence of the second-order methods while avoid sending the hessian matrix at each iteration. Therefore, the proposed approach significantly reduces the communication cost and preserves the privacy. Specifically, we alternate between two problems. The inner problem approximates the inverse Hessian-gradient product which is formulated as a quadratic optimization problem and approximately solved in a decentralized manner using one step of the group alternating direction method of multipliers (GADMM) method. The outer problem learns the model, which is solved by performing one decentralized Newton step at every iteration. Moreover, to reduce the communication-overhead per iteration, a quantized version (leveraging stochastic quantization) is also proposed. Simulation results illustrate that our algorithm outperforms the baselines of GADMM, Q-GADMM, Newton tracking, and Decentralized SGD, and provides energy and communication-efficient solutions for bandwidth-limited systems under different SNR regimes.

Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen