Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Terahertz sensing using deep neural network for material identification

Sivalingam, Thushan; Ali, Samad; Mahmood, Nurul Huda; Rajatheva, Nandana; Latva-Aho, Matti (2023-08-28)

 
Avaa tiedosto
nbnfi-fe20230906120334.pdf (408.8Kt)
nbnfi-fe20230906120334_meta.xml (40.35Kt)
nbnfi-fe20230906120334_solr.xml (32.11Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ANTS56424.2022.10227731

Sivalingam, Thushan
Ali, Samad
Mahmood, Nurul Huda
Rajatheva, Nandana
Latva-Aho, Matti
Institute of Electrical and Electronic Engineers
28.08.2023

T. Sivalingam, S. Ali, N. H. Mahmood, N. Rajatheva and M. Latva-Aho, "Terahertz Sensing using Deep Neural Network for Material Identification," 2022 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Gandhinagar, Gujarat, India, 2022, pp. 1-5, doi: 10.1109/ANTS56424.2022.10227731

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ANTS56424.2022.10227731
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe20230906120334
Tiivistelmä

Abstract

Terahertz (THz) spectrum is identified as a potential enabler for advanced sensing and positioning, where THz-Time domain spectroscopy (THz-TDS) is specified for investigating the unique material properties. The transmission THz-TDS measures the light absorption of materials. This paper proposes a novel low-complex deep neural network (DNN)-based multi-class classification architecture to sense a wide variety of materials from the transmission spectroscopy. Based on the spectroscopic measurements made across a chosen THz region of interest, DNN extracts and learns the distinctive crystal structure of materials as features. With sufficient quantities of noisy spectroscopic data and labels, we train and validate the model. In low SNR regions, the proposed DNN classification architecture achieves about 92% success rate, which is greater than those of the state-of-the-art methods.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen