Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinear energy-harvesting for D2D networks underlaying UAV with SWIPT using MADQN

Ouamri, Mohamed Amine; Barb, Gordana; Singh, Daljeet; Adam, Abuzar B. M.; Muthanna, M. S. A.; Li, Xingwang (2023-05-15)

 
Avaa tiedosto
nbnfi-fe20230907121212.pdf (351.7Kt)
nbnfi-fe20230907121212_meta.xml (39.62Kt)
nbnfi-fe20230907121212_solr.xml (38.06Kt)
Lataukset: 

URL:
https://doi.org/10.1109/LCOMM.2023.3275989

Ouamri, Mohamed Amine
Barb, Gordana
Singh, Daljeet
Adam, Abuzar B. M.
Muthanna, M. S. A.
Li, Xingwang
Institute of Electrical and Electronics Engineers
15.05.2023

M. A. Ouamri, G. Barb, D. Singh, A. B. M. Adam, M. S. A. Muthanna and X. Li, "Nonlinear Energy-Harvesting for D2D Networks Underlaying UAV With SWIPT Using MADQN," in IEEE Communications Letters, vol. 27, no. 7, pp. 1804-1808, July 2023, doi: 10.1109/LCOMM.2023.3275989.

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/lcomm.2023.3275989
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe20230907121212
Tiivistelmä

Abstract

Energy Efficiency (EE) has become an essential metric in Device-to-Device (D2D) communication underlaying Unmanned Aerial Vehicles (UAVs) Among the several technologies that provide significant energy, simultaneous wireless information and power transfer (SWIPT) has been proposed as a promising solution to improve EE. However, it is a challenging task to study the EE under nonlinear energy harvesting (EH) due to the limited sensitivity and the composition of the nonlinear circuit. Moreover, when D2D users transmit information using the EH from UAVs, interferences to cellular users occur and deteriorate the throughput. To tackle these problems, we leverage concepts from artificial intelligence (AI) to optimize EE of UAV-assisted D2D communication. Specifically, multi-agent deep reinforcement learning was proposed to jointly maximize throughput and EE, where the reward function is defined in terms of the introduced goal. Simulation results verify the supremacy of proposed approach over traditional algorithms.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen