Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning for instance retrieval : a survey

Chen, Wei; Liu, Yu; Wang, Weiping; Bakker, Erwin M.; Georgiou, Theodoros; Fieguth, Paul; Liu, Li (2022-11-01)

 
Avaa tiedosto
nbnfi-fe2023061555340.pdf (5.943Mt)
nbnfi-fe2023061555340_meta.xml (41.88Kt)
nbnfi-fe2023061555340_solr.xml (37.81Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TPAMI.2022.3218591

Chen, Wei
Liu, Yu
Wang, Weiping
Bakker, Erwin M.
Georgiou, Theodoros
Fieguth, Paul
Liu, Li
Institute of Electrical and Electronics Engineers
01.11.2022

W. Chen et al., "Deep Learning for Instance Retrieval: A Survey," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 6, pp. 7270-7292, 1 June 2023, doi: 10.1109/TPAMI.2022.3218591

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TPAMI.2022.3218591
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023061555340
Tiivistelmä

Abstract

In recent years a vast amount of visual content has been generated and shared from many fields, such as social media platforms, medical imaging, and robotics. This abundance of content creation and sharing has introduced new challenges, particularly that of searching databases for similar content — Content Based Image Retrieval (CBIR) — a long-established research area in which improved efficiency and accuracy are needed for real-time retrieval. Artificial intelligence has made progress in CBIR and has significantly facilitated the process of instance search. In this survey we review recent instance retrieval works that are developed based on deep learning algorithms and techniques, with the survey organized by deep feature extraction, feature embedding and aggregation methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, whereby we identify milestone work, reveal connections among various methods and present the commonly used benchmarks, evaluation results, common challenges, and propose promising future directions.

Kokoelmat
  • Avoin saatavuus [37957]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen