Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rain-like layer removal from hot-rolled steel strip based on attentive dual residual generative adversarial network

Luo, Qiwu; He, Handong; Liu, Kexin; Yang, Chunhua; Silvén, Olli; Liu, Li (2023-04-10)

 
Avaa tiedosto
nbnfi-fe2023052648437.pdf (2.285Mt)
nbnfi-fe2023052648437_meta.xml (39.40Kt)
nbnfi-fe2023052648437_solr.xml (37.03Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TIM.2023.3265761

Luo, Qiwu
He, Handong
Liu, Kexin
Yang, Chunhua
Silvén, Olli
Liu, Li
Institute of Electrical and Electronics Engineers
10.04.2023

Q. Luo, H. He, K. Liu, C. Yang, O. Silvén and L. Liu, "Rain-Like Layer Removal From Hot-Rolled Steel Strip Based on Attentive Dual Residual Generative Adversarial Network," in IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-15, 2023, Art no. 5011715, doi: 10.1109/TIM.2023.3265761

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TIM.2023.3265761
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023052648437
Tiivistelmä

Abstract

Rain-like layer removal from hot-rolled steel strip surface has been proven to be a workable measure for suppressing the false alarms frequently triggered in automated visual inspection (AVI) instruments. This article extends the scope of the “rain-like layer” from dispersed waterdrops to splashing water streaks and tiny white droplets. And a targeted method with both channel-wise and spatial-wise attention, namely attentive dual residual generative adversarial network (ADRGAN), is proposed. Meanwhile, a newly updated steel surface image dataset with typical natures of a “rain-like layer” gathered from an actual hot-rolling line, Steel_Rain, is opened for the first time. The comparison of experimental results between our proposed network and 11 prestigious networks shows that our ADRGAN-restored images are the closest to the ground-truth images on six public datasets, especially on the newly opened industrial dataset Steel_Rain; it yields the best scores of 56.8627 peak signal to noise ratio (PSNR), 0.9980 structural similarity index (SSIM), 0.134 mean-square error (MSE) and 0.006 learned perceptual image patch similarity (LPIPS). In the final verification test, the concept of rain-like layer removal has been proved to perform best in defect inspection, where four traditional defect detection algorithms are involved. And as expected, defect detection methods assisted by ADRGAN yield the minimum false alarms.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen