Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Joint estimation of clustered user activity and correlated channels with unknown covariance in mMTC

Djelouat, Hamza; Leinonen, Markus; Juntti, Markku (2023-05-05)

 
Avaa tiedosto
nbnfi-fe2023051042609.pdf (288.9Kt)
nbnfi-fe2023051042609_meta.xml (33.68Kt)
nbnfi-fe2023051042609_solr.xml (29.52Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICASSP49357.2023.10095199

Djelouat, Hamza
Leinonen, Markus
Juntti, Markku
Institute of Electrical and Electronics Engineers
05.05.2023

H. Djelouat, M. Leinonen and M. Juntti, "Joint Estimation of Clustered user Activity and Correlated Channels with Unknown Covariance in mMTC," ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, pp. 1-5, doi: 10.1109/ICASSP49357.2023.10095199.

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICASSP49357.2023.10095199
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023051042609
Tiivistelmä

Abstract

This paper considers joint user identification and channel estimation (JUICE) in grant-free access with a clustered user activity pattern. In particular, we address the JUICE in massive machine-type communications (mMTC) network under correlated Rayleigh fading channels with unknown channel covariance matrices. We formulate the JUICE problem as a maximum a posteriori probability (MAP) problem with properly chosen priors to incorporate the partial knowledge of the UEs’ clustered activity and the unknown covariance matrices. We derive a computationally-efficient algorithm based on alternating direction method of multipliers (ADMM) to solve the MAP problem iteratively via a sequence of closed-form updates. Numerical results highlight the significant improvements brought by the proposed approach in terms of channel estimation and activity detection performances for clustered user activity patterns.

Kokoelmat
  • Avoin saatavuus [37793]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen