Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learned reconstruction methods with convergence guarantees : a survey of concepts and applications

Mukherjee, Subhadip; Hauptmann, Andreas; Öktem, Ozan; Pereyra, Marcelo; Schönlieb, Carola-Bibiane (2023-01-02)

 
Avaa tiedosto
nbnfi-fe2023050541360.pdf (2.102Mt)
nbnfi-fe2023050541360_meta.xml (37.38Kt)
nbnfi-fe2023050541360_solr.xml (39.15Kt)
Lataukset: 

URL:
https://doi.org/10.1109/MSP.2022.3207451

Mukherjee, Subhadip
Hauptmann, Andreas
Öktem, Ozan
Pereyra, Marcelo
Schönlieb, Carola-Bibiane
Institute of Electrical and Electronics Engineers
02.01.2023

S. Mukherjee, A. Hauptmann, O. Öktem, M. Pereyra and C. -B. Schönlieb, "Learned Reconstruction Methods With Convergence Guarantees: A survey of concepts and applications," in IEEE Signal Processing Magazine, vol. 40, no. 1, pp. 164-182, Jan. 2023, doi: 10.1109/MSP.2022.3207451.

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/MSP.2022.3207451
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023050541360
Tiivistelmä

Abstract

In recent years, deep learning has achieved remarkable empirical success for image reconstruction. This has catalyzed an ongoing quest for the precise characterization of the correctness and reliability of data-driven methods in critical use cases, for instance, in medical imaging. Notwithstanding the excellent performance and efficacy of deep learning-based methods, concerns have been raised regarding the approaches’ stability, or lack thereof, with serious practical implications. Significant advances have been made in recent years to unravel the inner workings of data-driven image recovery methods, challenging their widely perceived black-box nature. In this article, we specify relevant notions of convergence for data-driven image reconstruction, which forms the basis of a survey of learned methods with mathematically rigorous reconstruction guarantees. An example that is highlighted is the role of input-convex neural networks (ICNNs), offering the possibility to combine the power of deep learning with classical convex regularization theory for devising methods that are provably convergent. This survey article is aimed at both methodological researchers seeking to advance the frontiers of our understanding of data-driven image reconstruction methods as well as practitioners by providing an accessible description of useful convergence concepts and by placing some of the existing empirical practices on a solid mathematical foundation.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen