Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ahead-Me Coverage (AMC) : on maintaining enhanced mobile network coverage for UAVs

Hellaoui, Hamed; Yang, Bin; Taleb, Tarik; Manner, Jukka (2023-01-11)

 
Avaa tiedosto
nbnfi-fe2023051143536.pdf (1.209Mt)
nbnfi-fe2023051143536_meta.xml (34.28Kt)
nbnfi-fe2023051143536_solr.xml (33.20Kt)
Lataukset: 

URL:
https://doi.org/10.1109/GLOBECOM48099.2022.10000874

Hellaoui, Hamed
Yang, Bin
Taleb, Tarik
Manner, Jukka
IEEE
11.01.2023

H. Hellaoui, B. Yang, T. Taleb and J. Manner, "Ahead-Me Coverage (AMC): On Maintaining Enhanced Mobile Network Coverage for UAVs," GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 2975-2980, doi: 10.1109/GLOBECOM48099.2022.10000874

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/globecom48099.2022.10000874
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023051143536
Tiivistelmä

Abstract

This paper proposes the concept of Ahead-Me Cov-erage (AMC) aiming to get the coverage of a cellular network ahead of the mobile users for maintaining enhanced Quality- of-Service (QoS) in cellular-connected unmanned aerial vehicle (UAV) networks. In such networks, each base station (BS) with an intelligent logic can automatically tilt the direction of its radio antennas based on the trajectory of UAV s. For this purpose, we first formulate AMC as an integer optimization problem for maximizing the minimum transmission rate of UAVs by jointly optimizing the angles of the different radio antenna, the resource allocation and the selection of the appropriate serving BS for the UAVs throughout their path. For this complex optimization problem, we then propose a solution based on Deep Reinforcement Learning (DRL) to solve it. Under this solution, we adopt a multi-heterogeneous agent-based approach (MHA-DRL) including two types of agents, namely the UAV agents and the BS agents. Each agent implements an Advantage Actor Critic (A2C) to learn optimal policies. Specifically, the BS agents aim to tilt their antennas to get ahead of the UAV s throughout their mobility, and the UAV agents target selecting the appropriate serving BSs along with resource allocation. Performance evaluations are presented to validate the effectiveness of the proposed approach.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen