Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep reinforcement learning-based joint caching and computing edge service placement for sensing-data-driven IIoT applications

Chen, Yan; Sun, Yanjing; Yang, Bin; Taleb, Tarik (2022-08-11)

 
Avaa tiedosto
nbnfi-fe2023051143531.pdf (1.258Mt)
nbnfi-fe2023051143531_meta.xml (34.42Kt)
nbnfi-fe2023051143531_solr.xml (37.38Kt)
Lataukset: 

URL:
https://doi.org/10.1109/icc45855.2022.9838832

Chen, Yan
Sun, Yanjing
Yang, Bin
Taleb, Tarik
Institute of Electrical and Electronics Engineers
11.08.2022

Y. Chen, Y. Sun, B. Yang and T. Taleb, "Deep Reinforcement Learning-based Joint Caching and Computing Edge Service Placement for Sensing-Data-Driven IIoT Applications," ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, Republic of, 2022, pp. 4287-4292, doi: 10.1109/ICC45855.2022.9838832

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/icc45855.2022.9838832
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023051143531
Tiivistelmä

Abstract

Edge computing (EC) is a promising technology to support a variety of performance-sensitive intelligent applications, especially in the Industrial Internet of Things (IIoT). The sensing-data-driven applications whose task processing requires sensing data from various sensors are typical applications in IIoT systems. The placement of caching and computing edge service functions for such applications is vital to ensure system performance and resource utilization in EC-enabled IIoT systems. Therefore, this paper investigates the joint caching and computing edge service placement (JCCESP) for multiple sensing-data-driven IIoT applications in an EC-enabled IIoT system. The JCCESP problem is formulated as a Markov Decision Process (MDP). Then, a deep reinforcement learning (DRL)-based approach is proposed to address the challenges like limited prior knowledge and the heterogeneity of such IIoT systems. Under such an approach, the policy network of the DRL agent is constructed based on an encoder-decoder model to tackle various applications requiring different numbers of service functions. A REINFORCE-based method is further employed to train the policy network. Simulation results indicate that the performances achieved by our proposed approach can converge after training and are significantly superior to benchmarks.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen