Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intrinsic-extrinsic preserved GANs for unsupervised 3D pose transfer

Chen, Haoyu; Tang, Hao; Shi, Henglin; Peng, Wei; Sebe, Nicu; Zhao, Guoying (2022-02-28)

 
Avaa tiedosto
nbnfi-fe2023033134147.pdf (3.271Mt)
nbnfi-fe2023033134147_meta.xml (41.46Kt)
nbnfi-fe2023033134147_solr.xml (37.15Kt)
Lataukset: 

URL:
https://doi.org/10.1109/iccv48922.2021.00851

Chen, Haoyu
Tang, Hao
Shi, Henglin
Peng, Wei
Sebe, Nicu
Zhao, Guoying
IEEE Computer Society
28.02.2022

H. Chen, H. Tang, H. Shi, W. Peng, N. Sebe and G. Zhao, "Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer," 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021, pp. 8610-8619, doi: 10.1109/ICCV48922.2021.00851.

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/iccv48922.2021.00851
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023033134147
Tiivistelmä

Abstract

With the strength of deep generative models, 3D pose transfer regains intensive research interests in recent years. Existing methods mainly rely on a variety of constraints to achieve the pose transfer over 3D meshes, e.g., the need for manually encoding for shape and pose disentanglement. In this paper, we present an unsupervised approach to conduct the pose transfer between any arbitrate given 3D meshes. Specifically, a novel Intrinsic-Extrinsic Preserved Generative Adversarial Network (IEP-GAN) is presented for both intrinsic (i.e., shape) and extrinsic (i.e., pose) information preservation. Extrinsically, we propose a co-occurrence discriminator to capture the structural/pose invariance from distinct Laplacians of the mesh. Meanwhile, intrinsically, a local intrinsic-preserved loss is introduced to preserve the geodesic priors while avoiding heavy computations. At last, we show the possibility of using IEP-GAN to manipulate 3D human meshes in various ways, including pose transfer, identity swapping and pose interpolation with latent code vector arithmetic. The extensive experiments on various 3D datasets of humans, animals and hands qualitatively and quantitatively demonstrate the generality of our approach. Our proposed model produces better results and is substantially more efficient compared to recent state-of-the-art methods. Code is available: https://github.com/mikecheninoulu/Unsupervised_IEPGAN

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen