Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

LocFedMix-SL : localize, federate, and mix for improved scalability, convergence, and latency in split learning

Oh, Seungeun; Park, Jihong; Vepakomma, Praneeth; Baek, Sihun; Raskar, Ramesh; Bennis, Mehdi; Kim, Seong-Lyun (2022-04-25)

 
Avaa tiedosto
nbnfi-fe2023040334843.pdf (1.297Mt)
nbnfi-fe2023040334843_meta.xml (43.31Kt)
nbnfi-fe2023040334843_solr.xml (35.08Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3485447.3512153

Oh, Seungeun
Park, Jihong
Vepakomma, Praneeth
Baek, Sihun
Raskar, Ramesh
Bennis, Mehdi
Kim, Seong-Lyun
Association for Computing Machinery
25.04.2022

Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis, and Seong-Lyun Kim. 2022. LocFedMix-SL: Localize, Federate, and Mix for Improved Scalability, Convergence, and Latency in Split Learning. In Proceedings of the ACM Web Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3485447.3512153

https://rightsstatements.org/vocab/InC/1.0/
© ACM 2022. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of the ACM Web Conference 2022 (WWW ’22), http://dx.doi.org/10.1145/3485447.3512153.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3485447.3512153
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023040334843
Tiivistelmä

Abstract

Split learning (SL) is a promising distributed learning framework that enables to utilize the huge data and parallel computing resources of mobile devices. SL is built upon a model-split architecture, wherein a server stores an upper model segment that is shared by different mobile clients storing its lower model segments. Without exchanging raw data, SL achieves high accuracy and fast convergence by only uploading smashed data from clients and downloading global gradients from the server. Nonetheless, the original implementation of SL sequentially serves multiple clients, incurring high latency with many clients. A parallel implementation of SL has great potential in reducing latency, yet existing parallel SL algorithms resort to compromising scalability and/or convergence speed. Motivated by this, the goal of this article is to develop a scalable parallel SL algorithm with fast convergence and low latency. As a first step, we identify that the fundamental bottleneck of existing parallel SL comes from the model-split and parallel computing architectures, under which the server-client model updates are often imbalanced, and the client models are prone to detach from the server’s model. To fix this problem, by carefully integrating local parallelism, federated learning, and mixup augmentation techniques, we propose a novel parallel SL framework, coined LocFedMix-SL. Simulation results corroborate that LocFedMix-SL achieves improved scalability, convergence speed, and latency, compared to sequential SL as well as the state-of-the-art parallel SL algorithms such as SplitFed and LocSplitFed.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen