Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A prediction of time series driving motion scenarios using LSTM and ESN

Qazani, Mohammad Reza Chalak; Tabarsinezhad, Farzin; Asadi, Houshyar; Lim, Chee Peng; Arogbonlo, Adetokunbo; Alsanwy, Shehab; Mohamed, Shadi; Rostami, Mehrdad; Nahavandi, Saeid (2022-11-18)

 
Avaa tiedosto
nbnfi-fe2023033134175.pdf (1.072Mt)
nbnfi-fe2023033134175_meta.xml (47.21Kt)
nbnfi-fe2023033134175_solr.xml (39.20Kt)
Lataukset: 

URL:
https://doi.org/10.1109/SMC53654.2022.9945220

Qazani, Mohammad Reza Chalak
Tabarsinezhad, Farzin
Asadi, Houshyar
Lim, Chee Peng
Arogbonlo, Adetokunbo
Alsanwy, Shehab
Mohamed, Shadi
Rostami, Mehrdad
Nahavandi, Saeid
Institute of Electrical and Electronics Engineers
18.11.2022

M. R. C. Qazani et al., "A Prediction of Time Series Driving Motion Scenarios Using LSTM and ESN," 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, 2022, pp. 1592-1599, doi: 10.1109/SMC53654.2022.9945220.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/SMC53654.2022.9945220
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023033134175
Tiivistelmä

Abstract

The motion signals are generated for a simulator user based on the visual understanding of the environment using virtual reality. In this respect, a motion cueing algorithm (MCA) is employed to reproduce the motion signals based on the real driving motion scenarios. Advanced MCAs are required to predict precise driving motion scenarios. Nonetheless, investigations on effective methods for predicting the driving motion scenarios accurately are limited. Current state-of-the-art studies mainly focus on the averaged motion signals from several simulator users pertaining to a specific map or from feedforward neural network and non-linear autoregressive. The existing methods are unable to yield precise predictions of the driving scenarios. In this research, the echo state network and long short-term memory models are employed for the first time in MCA to forecast the driving motion signals. Our evaluation proves the efficiency of our proposed methods in comparison with existing methods.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen