Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cross-database micro-expression recognition : a benchmark

Zhang, Tong; Zong, Yuan; Zheng, Wenming; Chen, C. L. Philip; Hong, Xiaopeng; Tang, Chuangao; Cui, Zhen; Zhao, Guoying (2020-04-06)

 
Avaa tiedosto
nbnfi-fe2023033134145.pdf (2.398Mt)
nbnfi-fe2023033134145_meta.xml (45.23Kt)
nbnfi-fe2023033134145_solr.xml (41.02Kt)
Lataukset: 

URL:
https://doi.org/10.1109/tkde.2020.2985365

Zhang, Tong
Zong, Yuan
Zheng, Wenming
Chen, C. L. Philip
Hong, Xiaopeng
Tang, Chuangao
Cui, Zhen
Zhao, Guoying
Institute of Electrical and Electronics Engineers
06.04.2020

T. Zhang et al., "Cross-Database Micro-Expression Recognition: A Benchmark," in IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 2, pp. 544-559, 1 Feb. 2022, doi: 10.1109/TKDE.2020.2985365

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/tkde.2020.2985365
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023033134145
Tiivistelmä

Abstract

Cross-database micro-expression recognition (CDMER) is one of recently emerging and interesting problem in micro-expression analysis. CDMER is more challenging than the conventional micro-expression recognition (MER), because the training and testing samples in CDMER come from different micro-expression databases, resulting in inconsistency of the feature distributions between the training and testing sets. In this paper, we contribute to this topic from three aspects. First, we establish a CDMER experimental evaluation protocol aiming to allow the researchers to conveniently work on this topic and evaluate their proposed methods under the same standard. Second, we conduct benchmark experiments by using NINE state-of-the-art domain adaptation (DA) methods and SIX popular spatiotemporal descriptors for investigating CDMER problem from two different perspectives. Third, we propose a novel DA method called region selective transfer regression (RSTR) to deal with the CDMER task. The overall superior performance of RSTR over the state-of-the-art DA methods demonstrates that taking into consideration the facial local region information used in RSTR contributes to developing effective DA methods for dealing with CDMER problem.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen