Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hyperbolic spatial temporal graph convolutional networks

Mostafa, Abdelrahman; Peng, Wei; Zhao, Guoying (2022-10-18)

 
Avaa tiedosto
nbnfi-fe2023033134056.pdf (4.143Mt)
nbnfi-fe2023033134056_meta.xml (33.40Kt)
nbnfi-fe2023033134056_solr.xml (32.14Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICIP46576.2022.9897522

Mostafa, Abdelrahman
Peng, Wei
Zhao, Guoying
Institute of Electrical and Electronics Engineers
18.10.2022

A. Mostafa, W. Peng and G. Zhao, "Hyperbolic Spatial Temporal Graph Convolutional Networks," 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 2022, pp. 3301-3305, doi: 10.1109/ICIP46576.2022.9897522

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICIP46576.2022.9897522
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023033134056
Tiivistelmä

Abstract

Spatial-temporal graph convolutional networks (ST-GCNs) have been successfully applied for dynamic graphs representation learning, such as modeling skeleton-based human actions. However, ST-GCNs embed these non-Euclidean graph structures into Euclidean space, which is not the natural space to represent such structures as embedding them in this space incurs a large distortion. In this work, we make use of hyperbolic non-Euclidean geometry and construct compact ST-GCNs in the hyperbolic space. It can be shown that hyperbolic ST-GCNs (HST-GCNs) outperform the corresponding Euclidean counterparts. Additionally, these compact hyperbolic models can be used to increase the performance of large complex Euclidean models. Moreover, we show that the same or even better performance of large Euclidean models can be achieved by fusing the scores of smaller Euclidean models and a compact hyperbolic model. This in turn leads to reducing the total number of model parameters and hence model size. To validate the performance of these hyperbolic networks, we conducted extensive experiments on NTU RGB+D, NTU RGB+D 120 and Kinectics-Skeleton datasets for human action recognition.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen