Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anomaly detection in cloud-native systems

Lomio, Francesco; Moreschini, Sergio; Li, Xiaozhou; Lenarduzzi, Valentina (2023-01-16)

 
Avaa tiedosto
nbnfi-fe2023032333019.pdf (127.0Kt)
nbnfi-fe2023032333019_meta.xml (33.43Kt)
nbnfi-fe2023032333019_solr.xml (28.41Kt)
Lataukset: 

URL:
https://doi.org/10.1109/SEAA56994.2022.00023

Lomio, Francesco
Moreschini, Sergio
Li, Xiaozhou
Lenarduzzi, Valentina
IEEE
16.01.2023

F. Lomio, S. Moreschini, X. Li and V. Lenarduzzi, "Anomaly Detection in Cloud-Native Systems," 2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Gran Canaria, Spain, 2022, pp. 100-103, doi: 10.1109/SEAA56994.2022.00023

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/SEAA56994.2022.00023
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023032333019
Tiivistelmä

Abstract

Companies develop cloud-native systems deployed on public and private clouds. Since private clouds have limited resources, the systems should run efficiently by keeping performance related anomalies under control. The goal of this work is to understand whether a set of five performance-related KPIs depends on the metrics collected at runtime by Kafka, Zookeeper, and other tools (168 different metrics). We considered four weeks worth of runtime data collected from a system running in production. We trained eight Machine Learning algorithms on three weeks worth of data and tested them on one week’s worth of data to compare their prediction accuracy and their training and testing time. It is possible to detect performance-related anomalies with a very high level of accuracy (higher than 95% AUC) and with very limited training time (between 8 and 17 minutes). Machine Learning algorithms can help to identify runtime anomalies and to detect them efficiently. Future work will include the identification of a proactive approach to recognize the root cause of the anomalies and to prevent them as early as possible.

Kokoelmat
  • Avoin saatavuus [38824]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen