Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regularity or anomaly? : on the use of anomaly detection for fine-grained JIT defect prediction

Lomio, Francesco; Pascarella, Luca; Palomba, Fabio; Lenarduzzi, Valentina (2023-01-16)

 
Avaa tiedosto
nbnfi-fe2023032333011.pdf (155.1Kt)
nbnfi-fe2023032333011_meta.xml (33.40Kt)
nbnfi-fe2023032333011_solr.xml (28.77Kt)
Lataukset: 

URL:
https://doi.org/10.1109/SEAA56994.2022.00049

Lomio, Francesco
Pascarella, Luca
Palomba, Fabio
Lenarduzzi, Valentina
IEEE
16.01.2023

F. Lomio, L. Pascarella, F. Palomba and V. Lenarduzzi, "Regularity or Anomaly? On The Use of Anomaly Detection for Fine-Grained JIT Defect Prediction," 2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Gran Canaria, Spain, 2022, pp. 270-273, doi: 10.1109/SEAA56994.2022.00049

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/SEAA56994.2022.00049
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023032333011
Tiivistelmä

Abstract

Fine-grained just-in-time defect prediction aims at identifying likely defective files within new commits. Popular techniques are based on supervised learning, where machine learning algorithms are fed with historical data. One of the limitations of these techniques is concerned with the use of imbalanced data that only contain a few defective samples to enable a proper learning phase. To overcome this problem, recent work has shown that anomaly detection can be used as an alternative. With our study, we aim at assessing how anomaly detection can be employed for the problem of fine-grained just-in-time defect prediction. We conduct an empirical investigation on 32 open-source projects, designing and evaluating three anomaly detection methods for fine-grained just-in-time defect prediction. Our results do not show significant advantages that justify the benefit of anomaly detection over machine learning approaches.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen