Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

CloudyFL : a cloudlet-based federated learning framework for sensing user behavior using wearable devices

Gong, Qingyuan; Ruan, Hui; Chen, Yang; Su, Xiang (2022-06-27)

 
Avaa tiedosto
nbnfi-fe2023041336533.pdf (616.6Kt)
nbnfi-fe2023041336533_meta.xml (33.87Kt)
nbnfi-fe2023041336533_solr.xml (32.42Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3539491.3539592

Gong, Qingyuan
Ruan, Hui
Chen, Yang
Su, Xiang
Association for Computing Machinery
27.06.2022

Qingyuan Gong1,2, Hui Ruan1,2, Yang Chen1,2, Xiang Su3,4. 2022. CloudyFL: A Cloudlet-Based Federated Learning Framework for Sensing User Behavior Using Wearable Devices. In International Workshop on Embedded and Mobile Deep learning (EMDL ’22), July 1, 2022, Portland, OR, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3539491.3539592

https://rightsstatements.org/vocab/InC/1.0/
© 2022 ACM. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in International Workshop on Embedded and Mobile Deep learning (EMDL ’22), http://dx.doi.org/10.1145/3539491.3539592.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3539491.3539592
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023041336533
Tiivistelmä

Abstract

Wearable devices have been widely utilized by the general public for tracking physical activities. Many complex machine learning models leverage wearable devices to address application problems, such as predicting pedestrian behaviors and health management. These models often incur heavy computing load and energy cost, which is challenging for wearable devices. However, aggregating the data from different wearable devices to a central server introduces privacy concerns. To address these challenges, we propose an architecture, CloudyFL, by deploying cloudlets close to wearable devices. In CloudyFL, each cloudlet forms a trusted zone covering a subset of nearby wearable devices. Models are trained in this trusted zone, and then, only the model parameters are transmitted to a centralized aggregator using a federated learning framework. We additionally propose an LSTM-based model for user behavior sensing, with a neural network design to adjust to the non-IID data distribution on multiple cloudlets. Experimental results show that our training model within the CloudyFL architecture can achieve a performance better than existing methodologies.

Kokoelmat
  • Avoin saatavuus [38824]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen