Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Variational autoencoders for reliability optimization in multi-access edge computing networks

Ahmadi, Arian; Semiari, Omid; Bennis, Mehdi; Debbah, Mérouane (2022-05-16)

 
Avaa tiedosto
nbnfi-fe2023021026765.pdf (883.1Kt)
nbnfi-fe2023021026765_meta.xml (33.85Kt)
nbnfi-fe2023021026765_solr.xml (35.86Kt)
Lataukset: 

URL:
https://doi.org/10.1109/wcnc51071.2022.9771710

Ahmadi, Arian
Semiari, Omid
Bennis, Mehdi
Debbah, Mérouane
Institute of Electrical and Electronics Engineers
16.05.2022

A. Ahmadi, O. Semiari, M. Bennis and M. Debbah, "Variational Autoencoders for Reliability Optimization in Multi-Access Edge Computing Networks," 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 2022, pp. 752-757, doi: 10.1109/WCNC51071.2022.9771710

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/wcnc51071.2022.9771710
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023021026765
Tiivistelmä

Abstract

Multi-access edge computing (MEC) is viewed as an integral part of future wireless networks to support new applications with stringent service reliability and latency requirements. However, guaranteeing ultra-reliable and low-latency MEC (URLL MEC) is very challenging due to uncertainties of wireless links, limited communications and computing resources, as well as dynamic network traffic. Enabling URLL MEC man-dates taking into account the statistics of the end-to-end (E2E) latency and reliability across the wireless and edge computing systems. In this paper, a novel framework is proposed to optimize the reliability of MEC networks by considering the distribution of E2E service delay, encompassing over-the-air transmission and edge computing latency. The proposed framework builds on correlated variational autoencoders (VAEs) to estimate the full distribution of the E2E service delay. Using this result, a new optimization problem based on risk theory is formulated to maximize the network reliability by minimizing the Conditional Value at Risk (CVaR) as a risk measure of the E2E service delay. To solve this problem, a new algorithm is developed to efficiently allocate users’ processing tasks to edge computing servers across the MEC network, while considering the statistics of the E2E service delay learned by VAEs. The simulation results show that the proposed scheme outperforms several baselines that do not account for the risk analyses or statistics of the E2E service delay.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen