Computation offloading and resource allocation in F-RANs : a federated deep reinforcement learning approach
Zhang, Lingling; Jiang, Yanxiang; Zheng, Fu-Chun; Bennis, Mehdi; You, Xiaohu (2022-07-11)
L. Zhang, Y. Jiang, F. -C. Zheng, M. Bennis and X. You, "Computation Offloading and Resource Allocation in F-RANs: A Federated Deep Reinforcement Learning Approach," 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul, Korea, Republic of, 2022, pp. 97-102, doi: 10.1109/ICCWorkshops53468.2022.9814649
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe2023021026767
Tiivistelmä
Abstract
The fog radio access network (F-RAN) is a promising technology in which the user mobile devices (MDs) can offload computation tasks to the nearby fog access points (F-APs). Due to the limited resource of F-APs, it is important to design an efficient task offloading scheme. In this paper, by considering time-varying network environment, a dynamic computation offloading and resource allocation problem in F-RANs is formulated to minimize the task execution delay and energy consumption of MDs. To solve the problem, a federated deep reinforcement learning (DRL) based algorithm is proposed, where the deep deterministic policy gradient (DDPG) algorithm performs computation offloading and resource allocation in each F-AP. Federated learning is exploited to train the DDPG agents in order to decrease the computing complexity of training process and protect the user privacy. Simulation results show that the proposed federated DDPG algorithm can achieve lower task execution delay and energy consumption of MDs more quickly compared with the other existing strategies.
Kokoelmat
- Avoin saatavuus [34343]