Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A local perturbation generation method for GAN-generated face anti-forensics

Zhang, Haitao; Chen, Beijing; Wang, Jinwei; Zhao, Guoying (2022-09-16)

 
Avaa tiedosto
nbnfi-fe2023030329564.pdf (1.520Mt)
nbnfi-fe2023030329564_meta.xml (35.08Kt)
nbnfi-fe2023030329564_solr.xml (43.52Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCSVT.2022.3207310

Zhang, Haitao
Chen, Beijing
Wang, Jinwei
Zhao, Guoying
Institute of Electrical and Electronics Engineers
16.09.2022

H. Zhang, B. Chen, J. Wang and G. Zhao, "A Local Perturbation Generation Method for GAN-Generated Face Anti-Forensics," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 33, no. 2, pp. 661-676, Feb. 2023, doi: 10.1109/TCSVT.2022.3207310

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCSVT.2022.3207310
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023030329564
Tiivistelmä

Abstract

Although the current generative adversarial networks (GAN)-generated face forensic detectors based on deep neural networks (DNNs) have achieved considerable performance, they are vulnerable to adversarial attacks. In this paper, an effective local perturbation generation method is proposed to expose the vulnerability of state-of-the-art forensic detectors. The main idea is to mine the fake faces’ areas of common concern in multiple-detectors’ decision-making, then generate local anti-forensic perturbations by GANs in these areas to enhance the visual quality and transferability of anti-forensic faces. Meanwhile, in order to improve the anti-forensic effect, a double- mask (soft mask and hard mask) strategy and a three-part loss (the GAN training loss, the adversarial loss consisting of ensemble classification loss and ensemble feature loss, and the regularization loss) are designed for the training of the generator. Experiments conducted on fake faces generated by StyleGAN demonstrate the proposed method’s advantage over the state-of-the-art methods in terms of anti-forensic success rate, imperceptibility, and transferability. The source code is available at https://github.com/imagecbj/A-Local-Perturbation-Generation-Method-for-GAN-generated-Face-Anti-forensics.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen