Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interaction-enhanced and time-aware graph convolutional network for successive point-of-interest recommendation in traveling enterprises

Liu, Yuwen; Wu, Huiping; Rezaee, Khosro; Khosravi, Mohammad R.; Khalaf, Osamah Ibrahim; Khan, Arif Ali; Ramesh, Dharavath; Qi, Lianyong (2022-08-19)

 
Avaa tiedosto
nbnfi-fe2023030229228.pdf (2.472Mt)
nbnfi-fe2023030229228_meta.xml (45.38Kt)
nbnfi-fe2023030229228_solr.xml (43.76Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TII.2022.3200067

Liu, Yuwen
Wu, Huiping
Rezaee, Khosro
Khosravi, Mohammad R.
Khalaf, Osamah Ibrahim
Khan, Arif Ali
Ramesh, Dharavath
Qi, Lianyong
Institute of Electrical and Electronics Engineers
19.08.2022

Y. Liu et al., "Interaction-Enhanced and Time-Aware Graph Convolutional Network for Successive Point-of-Interest Recommendation in Traveling Enterprises," in IEEE Transactions on Industrial Informatics, vol. 19, no. 1, pp. 635-643, Jan. 2023, doi: 10.1109/TII.2022.3200067

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TII.2022.3200067
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023030229228
Tiivistelmä

Abstract

Extensive user check-in data incorporating user preferences for location is collected through Internet of Things (IoT) devices, including cell phones and other sensing devices in location-based social network. It can help traveling enterprises intelligently predict users’ interests and preferences, provide them with scientific tourism paths, and increase the enterprises income. Thus, successive point-of-interest (POI) recommendation has become a hot research topic in augmented Intelligence of Things (AIoT). Presently, various methods have been applied to successive POI recommendations. Among them, the recurrent neural network-based approaches are committed to mining the sequence relationship between POIs, but ignore the high-order relationship between users and POIs. The graph neural network-based methods can capture the high-order connectivity, but it does not take the dynamic timeliness of POIs into account. Therefore, we propose an I nteraction-enhanced and T ime-aware G raph C onvolution N etwork (ITGCN) for successive POI recommendation. Specifically, we design an improved graph convolution network for learning the dynamic representation of users and POIs. We also designed a self-attention aggregator to embed high-order connectivity into the node representation selectively. The enterprise management systems can predict the preferences of users, which is helpful for future planning and development. Finally, experimental results prove that ITGCN brings better results compared to the existing methods.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen