Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Outage performance with deep learning analysis for UAV-borne IRS relaying NOMA systems with hardware impairments

Singh, Chandan Kumar; Upadhyay, Prabhat Kumar; Lehtomäki, Janne; Juntti, Markku (2023-01-18)

 
Avaa tiedosto
nbnfi-fe2023021427119.pdf (1.288Mt)
nbnfi-fe2023021427119_meta.xml (36.38Kt)
nbnfi-fe2023021427119_solr.xml (35.69Kt)
Lataukset: 

URL:
https://doi.org/10.1109/VTC2022-Fall57202.2022.10012811

Singh, Chandan Kumar
Upadhyay, Prabhat Kumar
Lehtomäki, Janne
Juntti, Markku
Institute of Electrical and Electronics Engineers
18.01.2023

C. K. Singh, P. K. Upadhyay, J. Lehtomäki and M. Juntti, "Outage Performance with Deep Learning Analysis for UAV-Borne IRS Relaying NOMA Systems with Hardware Impairments," 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, United Kingdom, 2022, pp. 1-7, doi: 10.1109/VTC2022-Fall57202.2022.10012811.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/vtc2022-fall57202.2022.10012811
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023021427119
Tiivistelmä

Abstract

While intelligent reflecting surfaces (IRSs) and non-orthogonal multiple access (NOMA) techniques have shown great potential to boost the spectral and energy efficiency for future wireless networks, unmanned aerial vehicles (UAVs) are committed for enhancing the wireless connectivity with fast and flexible deployment. In this regard, we study an integration of an IRS in UAV-enabled wireless relaying system using NOMA transmissions. We also count on the impacts of residual hardware impairments (HIs) in user devices and imperfect successive interference cancellation (SIC) in NOMA, which are inevitable in practical system implementation. We analyze the system performance by deriving the closed-form expressions of outage probability (OP) and system throughput over the line-of-sight (LoS) Rician fading channels for the aerial links. We further pursue asymptotic OP analysis to reveal useful insights on the achievable diversity order. Above all, we present a deep neural network (DNN) framework for OP prediction with a short execution time under the dynamic stochastic environment. Our results validate the theoretical proposition and accentuate the performance advantages of the proposed UAV-borne IRS relaying NOMA system.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen