Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

An educated warm start for deep image prior-based micro CT reconstruction

Barbano, Riccardo; Leuschner, Johannes; Schmidt, Maximilian; Denker, Alexander; Hauptmann, Andreas; Maass, Peter; Jin, Bangti (2022-12-30)

 
Avaa tiedosto
nbnfi-fe2023021627505.pdf (4.783Mt)
nbnfi-fe2023021627505_meta.xml (42.65Kt)
nbnfi-fe2023021627505_solr.xml (36.73Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCI.2022.3233188

Barbano, Riccardo
Leuschner, Johannes
Schmidt, Maximilian
Denker, Alexander
Hauptmann, Andreas
Maass, Peter
Jin, Bangti
Institute of Electrical and Electronics Engineers
30.12.2022

R. Barbano et al., "An Educated Warm Start for Deep Image Prior-Based Micro CT Reconstruction," in IEEE Transactions on Computational Imaging, vol. 8, pp. 1210-1222, 2022, doi: 10.1109/TCI.2022.3233188

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCI.2022.3233188
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023021627505
Tiivistelmä

Abstract

Deep image prior (DIP) was recently introduced as an effective unsupervised approach for image restoration tasks. DIP represents the image to be recovered as the output of a deep convolutional neural network, and learns the network’s parameters such that the model output matches the corrupted observation. Despite its impressive reconstructive properties, the approach is slow when compared to supervisedly learned, or traditional reconstruction techniques. To address the computational challenge, we bestow DIP with a two-stage learning paradigm: (i) perform a supervised pretraining of the network on a simulated dataset; (ii) fine-tune the network’s parameters to adapt to the target reconstruction task. We provide a thorough empirical analysis to shed insights into the impacts of pretraining in the context of image reconstruction. We showcase that pretraining considerably speeds up and stabilizes the subsequent reconstruction task from real-measured 2D and 3D micro computed tomography data of biological specimens.

Kokoelmat
  • Avoin saatavuus [38320]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen