Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explainability for medical image captioning

Beddiar, Djamila; Oussalah, Mourad; Seppanen, Tapio (2022-06-02)

 
Avaa tiedosto
nbnfi-fe202301162915.pdf (3.521Mt)
nbnfi-fe202301162915_meta.xml (33.62Kt)
nbnfi-fe202301162915_solr.xml (35.30Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ipta54936.2022.9784146

Beddiar, Djamila
Oussalah, Mourad
Seppanen, Tapio
Institute of Electrical and Electronics Engineers
02.06.2022

D. Beddiar, M. Oussalah and S. Tapio, "Explainability for Medical Image Captioning," 2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Salzburg, Austria, 2022, pp. 1-6, doi: 10.1109/IPTA54936.2022.9784146.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ipta54936.2022.9784146
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301162915
Tiivistelmä

Abstract

Medical image captioning is the process of generating clinically significant descriptions to medical images, which has many applications among which medical report generation is the most frequent one. In general, automatic captioning of medical images is of great interest for medical experts since it offers assistance in diagnosis, disease treatment and automating the workflow of the health practitioners. Recently, many efforts have been put forward to obtain accurate descriptions but medical image captioning still provides weak and incorrect descriptions. To alleviate this issue, it is important to explain why the model produced a particular caption based on some specific features. This is performed through Artificial Intelligence Explainability (XAI), which aims to unfold the ‘black-box’ feature of deep-learning based models. We present in this paper an explainable module for medical image captioning that provides a sound interpretation of our attention-based encoder-decoder model by explaining the correspondence between visual features and semantic features. We exploit for that, self-attention to compute word importance of semantic features and visual attention to compute relevant regions of the image that correspond to each generated word of the caption in addition to visualization of visual features extracted at each layer of the Convolutional Neural Network (CNN) encoder. We finally evaluate our model using the ImageCLEF medical captioning dataset.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen