Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integration of LSTM based Model to guide short-term energy forecasting for green ICT networks in smart grids

Malik, Hamid; Pouttu, Ari (2022-12-01)

 
Avaa tiedosto
nbnfi-fe202301173340.pdf (1.030Mt)
nbnfi-fe202301173340_meta.xml (30.04Kt)
nbnfi-fe202301173340_solr.xml (30.14Kt)
Lataukset: 

URL:
https://doi.org/10.1109/SmartGridComm52983.2022.9960992

Malik, Hamid
Pouttu, Ari
IEEE
01.12.2022

H. Malik and A. Pouttu, "Integration of LSTM based Model to guide short-term energy forecasting for green ICT networks in smart grids," 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Singapore, Singapore, 2022, pp. 290-295, doi: 10.1109/SmartGridComm52983.2022.9960992

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/SmartGridComm52983.2022.9960992
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301173340
Tiivistelmä

Abstract

Existing ICT networks are characterized by high level of energy consumption. In order to power up 5G base station sites, rising energy cost and high carbon emissions are major concerns that need to be dealt with. To achieve carbon neutrality, ICT sector needs to transform base station sites in a self-sustainable manner using renewable energy sources, local batteries and energy conservation techniques, even in adverse weather conditions and unexpected power outages. In this paper, short term-forecasting models are studied for accurate energy consumption and production forecast. The proposed architecture provides adaptive energy conservation technique using time series data analysis and Long Short-Term Memory for 5GNR base station site which is independent of traditional power sources and is completely powered by green energy. The accuracy analysis of this study was performed by the Mean Square Error (MSE) and Root Mean Square Error (RMSE). The results show high accuracy levels of LSTM model in guiding short-term energy forecasting for green ICT networks.

Kokoelmat
  • Avoin saatavuus [38404]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen