Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Xavier-enabled extreme reservoir machine for millimeter-wave beamspace channel tracking

Zarini, Hosein; Mili, Mohammad Robat; Rasti, Mehdi; Nardelli, Pedro H. J.; Bennis, Mehdi (2022-05-16)

 
Avaa tiedosto
nbnfi-fe202301132797.pdf (1.877Mt)
nbnfi-fe202301132797_meta.xml (37.44Kt)
nbnfi-fe202301132797_solr.xml (35.25Kt)
Lataukset: 

URL:
https://doi.org/10.1109/wcnc51071.2022.9771836

Zarini, Hosein
Mili, Mohammad Robat
Rasti, Mehdi
Nardelli, Pedro H. J.
Bennis, Mehdi
Institute of Electrical and Electronics Engineers
16.05.2022

H. Zarini, M. R. Mili, M. Rasti, P. H. J. Nardelli and M. Bennis, "Xavier-Enabled Extreme Reservoir Machine for Millimeter-Wave Beamspace Channel Tracking," 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 2022, pp. 1683-1688, doi: 10.1109/WCNC51071.2022.9771836.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/wcnc51071.2022.9771836
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301132797
Tiivistelmä

Abstract

In this paper, we propose an accurate two-phase millimeter-Wave (mmWave) beamspace channel tracking mechanism. Particularly in the first phase, we train an extreme reservoir machine (ERM) for tracking the historical features of the mmWave beamspace channel and predicting them in upcoming time steps. Towards a more accurate prediction, we further fine-tune the ERM by means of Xavier initializer technique, whereby the input weights in ERM are initially derived from a zero mean and finite variance Gaussian distribution, leading to 49% degradation in prediction variance of the conventional ERM. The proposed method numerically improves the achievable spectral efficiency (SE) of the existing counterparts, by 13%, when signal-to-noise-ratio (SNR) is 15dB. We further investigate an ensemble learning technique in the second phase by sequentially incorporating multiple ERMs to form an ensembled model, namely adaptive boosting (AdaBoost), which further reduces the prediction variance in conventional ERM by 56%, and concludes in 21% enhancement of achievable SE upon the existing schemes at SNR = 15dB.

Kokoelmat
  • Avoin saatavuus [38698]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen