Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Online learning for industrial IoT : the online convex optimization perspective

Chatzieleftheriou, Livia Elena; Liu, Chen-Feng; Koutsopoulos, Iordanis; Bennis, Mehdi; Debbah, Mérouane (2022-11-02)

 
Avaa tiedosto
nbnfi-fe2023021026804.pdf (282.6Kt)
nbnfi-fe2023021026804_meta.xml (36.84Kt)
nbnfi-fe2023021026804_solr.xml (34.58Kt)
Lataukset: 

URL:
https://doi.org/10.1109/meditcom55741.2022.9928703

Chatzieleftheriou, Livia Elena
Liu, Chen-Feng
Koutsopoulos, Iordanis
Bennis, Mehdi
Debbah, Mérouane
IEEE
02.11.2022

L. E. Chatzieleftheriou, C. -F. Liu, I. Koutsopoulos, M. Bennis and M. Debbah, "Online Learning for Industrial IoT: The Online Convex Optimization Perspective," 2022 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Athens, Greece, 2022, pp. 7-12, doi: 10.1109/MeditCom55741.2022.9928703

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/meditcom55741.2022.9928703
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023021026804
Tiivistelmä

Abstract

Industrial Internet of things (IIoT), one enabler for Industry 4.0 Smart Factories, is a mission-critical and latency-sensitive application of 5G networks. Due to the stringent latency requirements in IIoT, coordinating the simultaneous transmissions of massive entities and knowing the interference they create to each other is not feasible. Additionally, due to the mobility feature of mobile robots and automated guided vehicles, the experienced channel fading may differ from the estimated one. Therefore, some uncertainties exist in IIoT networks while we decide the communication and control mechanisms. Within the context of IIoT, this paper discusses some resource allocation solutions from the perspective of Online Convex Optimization (OCO). OCO is a computationally lightweight and memory-efficient mathematical tool which tackles the optimization problems, given that the network environment is arbitrary and unknown. We first introduce the key performance indicators in IIoT networks and highlight the uncertain factors, which we may encounter while allocating the communication resources in IIoT. Then we provide an overview of main principles of OCO and present the comparison benchmarks and related metrics for performance evaluation. Moreover, we discuss the kind of resource allocation problems in IIoT that can be tackled by OCO. Finally, we summarize the advantages of applying OCO to IIoT networks.

Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen