Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Joint user association and resource allocation for wireless hierarchical federated learning with non-IID data

Liu, Shengli; Yu, Guanding; Yu, Guanding; Bennis, Mehdi (2022-08-11)

 
Avaa tiedosto
nbnfi-fe2023021026761.pdf (1.531Mt)
nbnfi-fe2023021026761_meta.xml (33.15Kt)
nbnfi-fe2023021026761_solr.xml (30.82Kt)
Lataukset: 

URL:
https://doi.org/10.1109/icc45855.2022.9839164

Liu, Shengli
Yu, Guanding
Yu, Guanding
Bennis, Mehdi
Institute of Electrical and Electronics Engineers
11.08.2022

S. Liu, G. Yu, X. Chen and M. Bennis, "Joint User Association and Resource Allocation for Wireless Hierarchical Federated Learning with Non-IID Data," ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, Republic of, 2022, pp. 74-79, doi: 10.1109/ICC45855.2022.9839164

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/icc45855.2022.9839164
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023021026761
Tiivistelmä

Abstract

Wireless hierarchical federated learning (HFL) has been proposed for large-scale model training over multi-cell network while preserving the data privacy. However, the imbalanced data distribution and load have a significant impact on the convergence rate, the learning accuracy, and the learning latency in wireless HFL with non-independent identically distributed training data. To cope with these challenges, we first derive the learning latency and the upper bound of the model error. Then, an optimization problem is formulated to minimize the weighted sum of total data distribution distance and learning latency. Joint user association and wireless resource allocation algorithms are investigated to achieve the optimal learning performance. Finally, the effectiveness of the proposed algorithms are demonstrated by the simulations.

Kokoelmat
  • Avoin saatavuus [37957]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen