Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep semi-supervised active learning for knee osteoarthritis severity grading

Raisuddin, Abu Mohammed; Nguyen, Huy Hoang; Tiulpin, Aleksei (2022-04-26)

 
Avaa tiedosto
nbnfi-fe2023030129046.pdf (1.552Mt)
nbnfi-fe2023030129046_meta.xml (34.05Kt)
nbnfi-fe2023030129046_solr.xml (32.03Kt)
Lataukset: 

URL:
https://doi.org/10.1109/isbi52829.2022.9761668

Raisuddin, Abu Mohammed
Nguyen, Huy Hoang
Tiulpin, Aleksei
Institute of Electrical and Electronics Engineers
26.04.2022

A. M. Raisuddin, H. H. Nguyen and A. Tiulpin, "Deep Semi-Supervised Active Learning for Knee Osteoarthritis Severity Grading," 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India, 2022, pp. 1-5, doi: 10.1109/ISBI52829.2022.9761668

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/isbi52829.2022.9761668
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023030129046
Tiivistelmä

Abstract

This paper tackles the problem of developing active learning (AL) methods in the context of knee osteoarthritis (OA) diagnosis from X-ray images. OA is known to be a huge burden for society, and its associated costs are constantly rising. Automatic diagnostic methods can potentially reduce these costs, and Deep Learning (DL) methodology may be its key enabler. To date, there have been numerous studies on knee OA severity grading using DL, and all but one of them assume a large annotated dataset available for model development. In contrast, our study shows one can develop a knee OA severity grading model using AL from as little as 50 samples randomly chosen from a pool of unlabeled data. The main insight of this work is that the performance of AL improves when the model developer leverages the consistency regularization technique, commonly applied in semi-supervised learning.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen