Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep contextual bandits for orchestrating multi-user MISO systems with multiple RISs

Stylianopoulos, Kyriakos; Alexandropoulos, George; Huang, Chongwen; Yuen, Chau; Bennis, Mehdi; Debbah, Mérouane (2022-08-11)

 
Avaa tiedosto
nbnfi-fe2023021026710.pdf (1.620Mt)
nbnfi-fe2023021026710_meta.xml (39.15Kt)
nbnfi-fe2023021026710_solr.xml (36.77Kt)
Lataukset: 

URL:
https://doi.org/10.1109/icc45855.2022.9838369

Stylianopoulos, Kyriakos
Alexandropoulos, George
Huang, Chongwen
Yuen, Chau
Bennis, Mehdi
Debbah, Mérouane
Institute of Electrical and Electronics Engineers
11.08.2022

K. Stylianopoulos, G. Alexandropoulos, C. Huang, C. Yuen, M. Bennis and M. Debbah, "Deep Contextual Bandits for Orchestrating Multi-User MISO Systems with Multiple RISs," ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, Republic of, 2022, pp. 1556-1561, doi: 10.1109/ICC45855.2022.9838369

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/icc45855.2022.9838369
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023021026710
Tiivistelmä

Abstract

The emergent technology of Reconfigurable Intelligent Surfaces (RISs) has the potential to transform wireless environments into controllable systems, through programmable propagation of information-bearing signals. Techniques stemming from the field of Deep Reinforcement Learning (DRL) have recently gained popularity in maximizing the sum-rate performance in multi-user communication systems empowered by RISs. Such approaches are commonly based on Markov Decision Processes (MDPs). In this paper, we instead investigate the sum-rate design problem under the scope of the Multi-Armed Bandits (MAB) setting, which is a relaxation of the MDP framework. Nevertheless, in many cases, the MAB formulation is more appropriate to the channel and system models under the assumptions typically made in the RIS literature. To this end, we propose a simpler DRL approach for orchestrating multiple metasurfaces in RIS-empowered multi-user Multiple-Input Single-Output (MISO) systems, which we numerically show to perform equally well with a state-of-the-art MDP-based approach, while being less demanding computationally.

Kokoelmat
  • Avoin saatavuus [37736]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen