Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep reinforcement learning for dependency-aware microservice deployment in edge computing

Wang, Chenyang; Jia, Bosen; Yu, Hao; Li, Xiuhua; Wang, Xiaofei; Taleb, Tarik (2023-01-11)

 
Avaa tiedosto
nbnfi-fe202301276073.pdf (741.3Kt)
nbnfi-fe202301276073_meta.xml (40.59Kt)
nbnfi-fe202301276073_solr.xml (31.86Kt)
Lataukset: 

URL:
https://doi.org/10.1109/GLOBECOM48099.2022.10000818

Wang, Chenyang
Jia, Bosen
Yu, Hao
Li, Xiuhua
Wang, Xiaofei
Taleb, Tarik
Institute of Electrical and Electronics Engineers
11.01.2023

C. Wang, B. Jia, H. Yu, X. Li, X. Wang and T. Taleb, "Deep Reinforcement Learning for Dependency-aware Microservice Deployment in Edge Computing," GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 5141-5146, doi: 10.1109/GLOBECOM48099.2022.10000818.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/GLOBECOM48099.2022.10000818
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301276073
Tiivistelmä

Abstract

Recently, we have observed an explosion in the intellectual capacity of user equipment, coupled by a meteoric rise in the need for very demanding services and applications. The majority of the work leverages edge computing technologies to accomplish the quick deployment of microservices, but disregards their inter-dependencies. In addition, while constructing the microservice deployment approach, several research disregard the significance of system context extraction. The microservice deployment issue (MSD) is stated as a max-min problem by concurrently evaluating the system cost and service quality. This research first analyzes an attention-based microservice representation approach for extracting system context. The attention-modified soft actor-critic method is proposed to the MSD issue. The simulation results reveal the ASAC algorithm’s priorities in terms of average system cost and system reward.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen