Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification, activity, and biometric classification using radar-based sensing

Nguyen, Le; Álvarez Casado, Constantino; Silvén, Olli; Bordallo López, Miguel (2022-10-25)

 
Avaa tiedosto
nbnfi-fe2023020926619.pdf (1.850Mt)
nbnfi-fe2023020926619_meta.xml (37.47Kt)
nbnfi-fe2023020926619_solr.xml (31.33Kt)
Lataukset: 

URL:
https://doi.org/10.1109/etfa52439.2022.9921651

Nguyen, Le
Álvarez Casado, Constantino
Silvén, Olli
Bordallo López, Miguel
IEEE
25.10.2022

L. Nguyen, C. Á. Casado, O. Silvén and M. B. López, "Identification, Activity, and Biometric Classification using Radar-based Sensing," 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), Stuttgart, Germany, 2022, pp. 1-8, doi: 10.1109/ETFA52439.2022.9921651

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/etfa52439.2022.9921651
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023020926619
Tiivistelmä

Abstract

We explore the possibility of leveraging radar-based sensing systems to analyze vital signs for classification, user identification, and regression tasks. Specifically, we extract time-domain and frequency-domain features from distance, respiration, and pulse signals obtained by filtering radio-frequency signals. Our Random Forest classification models are trained on these features to recognize scenarios in which the radar data were collected, categorize individuals into age groups, and classify human activities. For classification, we achieved up to 94.7% of accuracy when distinguishing apnea and normal breathing in the lying position. We then show the feasibility of identifying individuals in a small group using vital signs, which can support model fine-tuning with data acquired from new users. Furthermore, we used a Random Forest regression model to estimate the Body Mass Index, height, and weight of subjects. These classification, identification, and regression models benefit smart systems that can simultaneously identify users, recognize their behaviours, and extract their vital signs from radar sensors.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen