Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Leveraging deep neural networks for massive MIMO data detection

Nguyen, Ly V.; Nguyen, Nhan T.; Tran, Nghi H.; Juntti, Markku; Swindlehurst, A. Lee; Nguyen, Duy H. N. (2022-05-10)

 
Avaa tiedosto
nbnfi-fe202301265946.pdf (377.7Kt)
nbnfi-fe202301265946_meta.xml (40.13Kt)
nbnfi-fe202301265946_solr.xml (35.75Kt)
Lataukset: 

URL:
https://doi.org/10.1109/mwc.013.2100652

Nguyen, Ly V.
Nguyen, Nhan T.
Tran, Nghi H.
Juntti, Markku
Swindlehurst, A. Lee
Nguyen, Duy H. N.
Institute of Electrical and Electronics Engineers
10.05.2022

Nguyen, L. V., Nguyen, N. T., Tran, N. H., Juntti, M., Swindlehurst, A. L., & Nguyen, D. H. N. (2023). Leveraging deep neural networks for massive mimo data detection. IEEE Wireless Communications, 30(1), 174–180. https://doi.org/10.1109/MWC.013.2100652

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/mwc.013.2100652
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301265946
Tiivistelmä

Abstract

Massive multiple-input multiple-output (MIMO) is a key technology for emerging next-generation wireless systems. Utilizing large antenna arrays at base-stations, massive MIMO enables substantial spatial multiplexing gains by simultaneously serving a large number of users. However, the complexity in massive MIMO signal processing (e.g., data detection) increases rapidly with the number of users, making conventional hand-engineered algorithms less computationally efficient. Lowcomplexity massive MIMO detection algorithms, especially those inspired or aided by deep learning, have emerged as a promising solution. While there exist many MIMO detection algorithms, the aim of this magazine paper is to provide insight into how to leverage deep neural networks (DNN) for massive MIMO detection. We review recent developments in DNN-based MIMO detection that incorporate the domain knowledge of established MIMO detection algorithms with the learning capability of DNNs. We then present a comparison of the key numerical performance metrics of these works. We conclude by describing future research areas and applications of DNNs in massive MIMO receivers.

Kokoelmat
  • Avoin saatavuus [38358]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen