Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vehicle-to-Everything (V2X) datasets for Machine Learning-based Predictive Quality of Service

Skocaj, Marco; Di Cicco, Nicola; Zugno, Tommaso; Boban, Mate; Blumenstein, Jiri; Prokes, Ales; Mikulasek, Tomas; Vychodil, Josef; Mikhaylov, Konstantin; Tornatore, Massimo; Degli-Esposti, Vittorio (2023-09-01)

 
Avaa tiedosto
nbnfi-fe20231005138864.pdf (2.168Mt)
nbnfi-fe20231005138864_meta.xml (52.32Kt)
nbnfi-fe20231005138864_solr.xml (34.61Kt)
Lataukset: 

URL:
https://doi.org/10.1109/MCOM.004.2200723

Skocaj, Marco
Di Cicco, Nicola
Zugno, Tommaso
Boban, Mate
Blumenstein, Jiri
Prokes, Ales
Mikulasek, Tomas
Vychodil, Josef
Mikhaylov, Konstantin
Tornatore, Massimo
Degli-Esposti, Vittorio
Institute of Electrical and Electronics Engineers
01.09.2023

M. Skocaj et al., "Vehicle-to-Everything (V2X) Datasets for Machine Learning-Based Predictive Quality of Service," in IEEE Communications Magazine, vol. 61, no. 9, pp. 106-112, September 2023, doi: 10.1109/MCOM.004.2200723

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/MCOM.004.2200723
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe20231005138864
Tiivistelmä

Abstract

We present two datasets for Machine Learning (ML)-based Predictive Quality of Service (PQoS) comprising Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) radio channel measurements. As V2V and V2I are both indispensable elements for providing connectivity in Intelligent Transport Systems (ITS), we argue that a combination of the two datasets enables the study of Vehicle-to-Everything (V2X) connectivity in its entire complexity. We describe in detail our methodologies for performing V2V and V2I measurement campaigns, and we provide illustrative examples on the use of the collected data. Specifically, we showcase the application of approximate Bayesian Methods using the two presented datasets to portray illustrative use cases of uncertainty-aware Quality of Service and Channel State Information forecasting. Finally, we discuss novel exploratory research direction building upon our work. The V2I and V2V datasets are available on IEEE Dataport, and the code utilized in our numerical experiments is publicly accessible via CodeOcean.

Kokoelmat
  • Avoin saatavuus [38824]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen