Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A framework for energy and carbon footprint analysis of distributed and federated edge learning

Savazzi, Stefano; Kianoush, Sanaz; Rampa, Vittorio; Bennis, Mehdi (2021-10-21)

 
Avaa tiedosto
nbnfi-fe2023042839338.pdf (1.409Mt)
nbnfi-fe2023042839338_meta.xml (33.66Kt)
nbnfi-fe2023042839338_solr.xml (33.64Kt)
Lataukset: 

URL:
https://doi.org/10.1109/PIMRC50174.2021.9569307

Savazzi, Stefano
Kianoush, Sanaz
Rampa, Vittorio
Bennis, Mehdi
Institute of Electrical and Electronics Engineers
21.10.2021

S. Savazzi, S. Kianoush, V. Rampa and M. Bennis, "A framework for energy and carbon footprint analysis of distributed and federated edge learning," 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 2021, pp. 1564-1569, doi: 10.1109/PIMRC50174.2021.9569307

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/PIMRC50174.2021.9569307
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023042839338
Tiivistelmä

Abstract

Recent advances in distributed learning raise environmental concerns due to the large energy needed to train and move data to/from data centers. Novel paradigms, such as federated learning (FL), are suitable for decentralized model training across devices or silos that simultaneously act as both data producers and learners. Unlike centralized learning (CL) techniques, relying on big-data fusion and analytics located in energy hungry data centers, in FL scenarios devices collaboratively train their models without sharing their private data. This article breaks down and analyzes the main factors that influence the environmental footprint of FL policies compared with classical CL/Big-Data algorithms running in data centers. The proposed analytical framework takes into account both learning and communication energy costs, as well as the incurred greenhouse gas, or carbon equivalent, emissions. The framework is evaluated in an industrial setting assuming a real-world robotized workplace. Results show that FL allows remarkable end-to-end energy savings (30%÷40%) in low-rate/power IoT communications (with limited energy efficiency). On the other hand, FL is slower to converge when local data are unevenly distributed (often 2x slower than CL).

Kokoelmat
  • Avoin saatavuus [37920]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen