Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Minimizing the AoI in multi-source two-hop systems under an average resource constraint

Zakeri, Abolfazl; Moltafet, Mohammad; Leinonen, Markus; Codreanu, Marian (2022-07-28)

 
Avaa tiedosto
nbnfi-fe202301041411.pdf (310.7Kt)
nbnfi-fe202301041411_meta.xml (35.88Kt)
nbnfi-fe202301041411_solr.xml (32.65Kt)
Lataukset: 

URL:
https://doi.org/10.1109/spawc51304.2022.9834029

Zakeri, Abolfazl
Moltafet, Mohammad
Leinonen, Markus
Codreanu, Marian
Institute of Electrical and Electronics Engineers
28.07.2022

A. Zakeri, M. Moltafet, M. Leinonen and M. Codreanu, "Minimizing the AoI in Multi-Source Two-Hop Systems under an Average Resource Constraint," 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), 2022, pp. 1-5, doi: 10.1109/SPAWC51304.2022.9834029.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/spawc51304.2022.9834029
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301041411
Tiivistelmä

Abstract

We develop online scheduling policies to minimize the sum average age of information (AoI) subject to transmission capacity and long-run average resource constraints in a multisource two-hop system, where independent sources randomly generate status update packets which are sent to the destination via a relay through error-prone links. A stochastic optimization problem is formulated and solved in known and unknown environments. For the known environment, an online nearoptimal low-complexity policy is developed using the driftplus-penalty method. For the unknown environment, a deep reinforcement learning policy is developed by employing the Lyapunov optimization theory and a dueling double deep Qnetwork. Simulation results show up to 136% performance improvement of the proposed policy compared to a greedy-based baseline policy.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen