Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predictive closed-loop remote control over wireless two-way split Koopman autoencoder

Girgis, Abanoub M.; Seo, Hyowoon; Park, Jihong; Bennis, Mehdi; Choi, Jinho (2022-09-14)

 
Avaa tiedosto
nbnfi-fe202301051555.pdf (1.676Mt)
nbnfi-fe202301051555_meta.xml (39.49Kt)
nbnfi-fe202301051555_solr.xml (36.46Kt)
Lataukset: 

URL:
https://doi.org/10.1109/JIOT.2022.3206415

Girgis, Abanoub M.
Seo, Hyowoon
Park, Jihong
Bennis, Mehdi
Choi, Jinho
Institute of Electrical and Electronics Engineers
14.09.2022

A. M. Girgis, H. Seo, J. Park, M. Bennis and J. Choi, "Predictive Closed-Loop Remote Control Over Wireless Two-Way Split Koopman Autoencoder," in IEEE Internet of Things Journal, vol. 9, no. 23, pp. 23285-23301, 1 Dec.1, 2022, doi: 10.1109/JIOT.2022.3206415

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/jiot.2022.3206415
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301051555
Tiivistelmä

Abstract

Real-time remote control over wireless is an important yet challenging application in fifth-generation and beyond due to its mission-critical nature under limited communication resources. Current solutions hinge on not only utilizing ultrareliable and low-latency communication (URLLC) links but also predicting future states, which may consume enormous communication resources and struggle with a short prediction time horizon. To fill this void, in this article we propose a novel two-way Koopman autoencoder (AE) approach wherein: 1) a sensing Koopman AE learns to understand the temporal state dynamics and predicts missing packets from a sensor to its remote controller and 2) a controlling Koopman AE learns to understand the temporal action dynamics and predicts missing packets from the controller to an actuator co-located with the sensor. Specifically, each Koopman AE aims to learn the Koopman operator in the hidden layers while the encoder of the AE aims to project the nonlinear dynamics onto a lifted subspace, which is reverted into the original nonlinear dynamics by the decoder of the AE. The Koopman operator describes the linearized temporal dynamics, enabling long-term future prediction and coping with missing packets and closed-form optimal control in the lifted subspace. Simulation results corroborate that the proposed approach achieves a 38X lower mean squared control error at 0-dBm signal-to-noise ratio (SNR) than the nonpredictive baseline.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen