Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coded caching via federated deep reinforcement learning in fog radio access networks

Chen, Yingqi; Jiang, Yanxiang; Zheng, Fu-Chun; Bennis, Mehdi; You, Xiaohu (2022-07-11)

 
Avaa tiedosto
nbnfi-fe2023021026806.pdf (375.7Kt)
nbnfi-fe2023021026806_meta.xml (36.79Kt)
nbnfi-fe2023021026806_solr.xml (35.69Kt)
Lataukset: 

URL:
https://doi.org/10.1109/iccworkshops53468.2022.9814524

Chen, Yingqi
Jiang, Yanxiang
Zheng, Fu-Chun
Bennis, Mehdi
You, Xiaohu
Institute of Electrical and Electronics Engineers
11.07.2022

Y. Chen, Y. Jiang, F. -C. Zheng, M. Bennis and X. You, "Coded Caching via Federated Deep Reinforcement Learning in Fog Radio Access Networks," 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul, Korea, Republic of, 2022, pp. 403-408, doi: 10.1109/ICCWorkshops53468.2022.9814524

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/iccworkshops53468.2022.9814524
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023021026806
Tiivistelmä

Abstract

In this paper, the placement strategy design of coded caching in fog-radio access networks (F -RANs) is investigated. By considering time-variant content popularity, federated deep re-inforcement learning is exploited to learn the placement strategy for our coded caching scheme. Initially, the placement problem is modeled as a Markov decision process (MDP) to capture the popularity variations and minimize the long-term content access delay. The reformulated sequential decision problem is solved by dueling double deep Q-learning (dueling DDQL). Then, federated learning is applied to learn the relatively low-dimensional local decision models and aggregate the global decision model, which alleviates over-consumption of bandwidth resources and avoids direct learning of a complex coded caching decision model with high-dimensional state space. Simulation results show that our proposed scheme outperforms the benchmarks in reducing the content access delay, keeping the performance stable, and trading off between the local caching gain and the global multicasting gain.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen