Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Landslide detection with unmanned aerial vehicles

Vu, Hoai Nam; Nguyen, Huong Mai; Pham, Cuong Duc; Tran, Anh Dat; Trong, Khanh Nguyen; Pham, Cuong; Nguyen, Viet Hung (2021-10-29)

 
Avaa tiedosto
nbnfi-fe2023032333025.pdf (429.4Kt)
nbnfi-fe2023032333025_meta.xml (41.66Kt)
nbnfi-fe2023032333025_solr.xml (32.63Kt)
Lataukset: 

URL:
https://doi.org/10.1109/MAPR53640.2021.9585261

Vu, Hoai Nam
Nguyen, Huong Mai
Pham, Cuong Duc
Tran, Anh Dat
Trong, Khanh Nguyen
Pham, Cuong
Nguyen, Viet Hung
IEEE
29.10.2021

H. N. Vu et al., "Landslide Detection with Unmanned Aerial Vehicles," 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), Hanoi, Vietnam, 2021, pp. 1-7, doi: 10.1109/MAPR53640.2021.9585261

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/MAPR53640.2021.9585261
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023032333025
Tiivistelmä

Abstract

Landslide is one of the most dangerous disasters, especially for countries with large mountainous terrain. It causes a great damage to lives, infrastructure and environments, such as traffic congestion and high accidents. Therefore, automated landslide detection is an important task for warning and reducing its consequences such as blocked traffic or traffic accidents. For instance, people approaching the disaster area can adjust their routes to avoid blocked roads, or dangerous traffic signs can be positioned in time to warn the traffic participants to avoid the interrupted road ahead. This paper proposes a method to detect blocked roads caused by landslide by utilizing images captured from Unmanned Aerial Vehicles (UAV). The proposed method comprises of three components: road segmentation, blocked road candidate extraction, and blocked road classification, which is leveraged by a multi-stage convolutional neural network model. Our experiments demonstrate that the proposed method can surpass over several state-of-the art methods on our self-collected dataset of 400 images captured with an UAV.

Kokoelmat
  • Avoin saatavuus [38506]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen