Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

PhysFormer : facial video-based physiological measurement with temporal difference transformer

Yu, Zitong; Shen, Yuming; Shi, Jingang; Zhao, Hengshuang; Torr, Philip; Zhao, Guoying (2022-09-27)

 
Avaa tiedosto
nbnfi-fe2023032332960.pdf (1.510Mt)
nbnfi-fe2023032332960_meta.xml (40.83Kt)
nbnfi-fe2023032332960_solr.xml (38.20Kt)
Lataukset: 

URL:
https://doi.org/10.1109/cvpr52688.2022.00415

Yu, Zitong
Shen, Yuming
Shi, Jingang
Zhao, Hengshuang
Torr, Philip
Zhao, Guoying
Institute of Electrical and Electronics Engineers
27.09.2022

Z. Yu, Y. Shen, J. Shi, H. Zhao, P. Torr and G. Zhao, "PhysFormer: Facial Video-based Physiological Measurement with Temporal Difference Transformer," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 4176-4186, doi: 10.1109/CVPR52688.2022.00415

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/cvpr52688.2022.00415
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023032332960
Tiivistelmä

Abstract

Remote photoplethysmography (rPPG), which aims at measuring heart activities and physiological signals from facial video without any contact, has great potential in many applications. Recent deep learning approaches focus on mining subtle rPPG clues using convolutional neural networks with limited spatio-temporal receptive fields, which neglect the long-range spatio-temporal perception and interaction for rPPG modeling. In this paper, we propose the PhysFormer, an end-to-end video transformer based architecture, to adaptively aggregate both local and global spatio-temporal features for rPPG representation enhancement. As key modules in PhysFormer, the temporal difference transformers first enhance the quasi-periodic rPPG features with temporal difference guided global attention, and then refine the local spatio-temporal representation against interference. Furthermore, we also propose the label distribution learning and a curriculum learning inspired dynamic constraint in frequency domain, which provide elaborate supervisions for PhysFormer and alleviate overfitting. Comprehensive experiments are performed on four benchmark datasets to show our superior performance on both intra- and cross-dataset testings. One highlight is that, unlike most transformer networks needed pretraining from large-scale datasets, the proposed PhysFormer can be easily trained from scratch on rPPG datasets, which makes it promising as a novel transformer baseline for the rPPG community. The codes are available at https://github.com/ZitongYu/PhysFormer.

Kokoelmat
  • Avoin saatavuus [37957]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen