Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model compression via pattern shared sparsification in analog federated learning under communication constraints

Ahn, Jin-Hyun; Bennis, Mehdi; Kang, Joonhyuk (2023-07-06)

 
Avaa tiedosto
nbnfi-fe2023032032397.pdf (10.41Mt)
nbnfi-fe2023032032397_meta.xml (31.38Kt)
nbnfi-fe2023032032397_solr.xml (35.04Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TGCN.2022.3186538

Ahn, Jin-Hyun
Bennis, Mehdi
Kang, Joonhyuk
Institute of Electrical and Electronics Engineers
06.07.2023

J. -H. Ahn, M. Bennis and J. Kang, "Model Compression via Pattern Shared Sparsification in Analog Federated Learning Under Communication Constraints," in IEEE Transactions on Green Communications and Networking, vol. 7, no. 1, pp. 298-312, March 2023, doi: 10.1109/TGCN.2022.3186538

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TGCN.2022.3186538
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023032032397
Tiivistelmä

Abstract

Recently, it has been shown that analog transmission based federated learning enables more efficient usage of communication resources compared to the conventional digital transmission. In this paper, we propose an effective model compression strategy enabling analog FL under constrained communication bandwidth. To this end, the proposed approach is based on pattern shared sparsification by setting the same sparsification pattern of parameter vectors uploaded by edge devices, as opposed to each edge device independently applying sparsification. In particular, we propose specific schemes for determining the sparsification pattern and characterize the convergence of analog FL leveraging these proposed sparsification strategies, by deriving a closed-form upper boun d of convergence rate and residual error. The closed-form expression allows to capture the effect of communication bandwidth and power budget to the performance of analog FL. In terms of convergence analysis, the model parameter obtained with the proposed schemes is proven to converge to the optimum of model parameter. Numerical results show that leveraging the proposed pattern shared sparsification consistently improves the performance of analog FL in various settings of system parameters. The improvement in performance is more significant under scarce communication bandwidth and limited transmit power budget.

Kokoelmat
  • Avoin saatavuus [38670]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen