Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Resource management for multiplexing eMBB and URLLC services over RIS-aided THz communication

Zarini, Hosein; Gholipoor, Narges; Mili, Mohammad Robat; Rasti, Mehdi; Tabassum, Hina; Hossain, Ekram (2023-01-03)

 
Avaa tiedosto
nbnfi-fe2023032032402.pdf (3.422Mt)
nbnfi-fe2023032032402_meta.xml (39.27Kt)
nbnfi-fe2023032032402_solr.xml (37.20Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCOMM.2023.3233988

Zarini, Hosein
Gholipoor, Narges
Mili, Mohammad Robat
Rasti, Mehdi
Tabassum, Hina
Hossain, Ekram
Institute of Electrical and Electronics Engineers
03.01.2023

H. Zarini, N. Gholipoor, M. R. Mili, M. Rasti, H. Tabassum and E. Hossain, "Resource Management for Multiplexing eMBB and URLLC Services Over RIS-Aided THz Communication," in IEEE Transactions on Communications, vol. 71, no. 2, pp. 1207-1225, Feb. 2023, doi: 10.1109/TCOMM.2023.3233988

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCOMM.2023.3233988
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023032032402
Tiivistelmä

Abstract

Integrating the multitude of emerging internet of things (IoT) applications with diverse requirements in beyond fifth generation (B5G) networks necessitates the coexistence of enhanced mobile broadband (eMBB) and ultra-reliable low-latency communication (URLLC) services. However, bandwidth limited and congested sub-6GHz bands are incapable of fulfilling this coexistence. In this paper, we consider a reconfigurable intelligent surface (RIS)-aided wideband terahertz (THz) communication system to this end. In specific, we formulate a resource management problem, aiming at jointly optimizing the reflection coefficient of the RIS elements and the transmit power of the base station, as well as the wideband THz resource block allocation. To solve this problem, we adopt a supervised learning approach relying on optimization, deep learning and ensemble learning methods. Simulation results show that for an RIS of size 11×11, up to 49% spectral efficiency gain is achieved for the eMBB service compared to the counterparts, while ensuring the reliability and latency requirements of the URLLC service. Further, the ensemble learning model can perform real-time resource management at the expense of up to 1% performance loss, compared to the optimization approach.

Kokoelmat
  • Avoin saatavuus [38670]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen