Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transferable discriminative feature mining for unsupervised domain adaptation

Zhao, Lingjun; Deng, Wanxia; Kuang, Gangyao; Hu, Dewen; Liu, Li (2021-09-23)

 
Avaa tiedosto
nbnfi-fe2023041235960.pdf (413.9Kt)
nbnfi-fe2023041235960_meta.xml (36.19Kt)
nbnfi-fe2023041235960_solr.xml (35.47Kt)
Lataukset: 

URL:
https://doi.org/10.1109/icip42928.2021.9506534

Zhao, Lingjun
Deng, Wanxia
Kuang, Gangyao
Hu, Dewen
Liu, Li
Institute of Electrical and Electronics Engineers
23.09.2021

L. Zhao, W. Deng, G. Kuang, D. Hu and L. Liu, "Transferable Discriminative Feature Mining For Unsupervised Domain Adaptation," 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 2021, pp. 1259-1263, doi: 10.1109/ICIP42928.2021.9506534.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/icip42928.2021.9506534
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2023041235960
Tiivistelmä

Abstract

Unsupervised Domain Adaptation (UDA) aims to seek an effective model for unlabeled target domain by leveraging knowledge from a labeled source domain with a related but different distribution. Many existing approaches ignore the underlying discriminative features of the target data and the discrepancy of conditional distributions. To address these two issues simultaneously, the paper presents a Transferable Discriminative Feature Mining (TDFM) approach for UDA, which can naturally unify the mining of domain-invariant discriminative features and the alignment of class-wise features into one single framework. To be specific, to achieve the domain-invariant discriminative features, TDFM jointly learns a shared encoding representation for two tasks: supervised classification of labeled source data, and discriminative clustering of unlabeled target data. It then conducts the class-wise alignment by decreasing intra-class variations and increasing inter-class differences across domains, encouraging the emergence of transferable discriminative features. When combined, these two procedures are mutually beneficial. Comprehensive experiments verify that TDFM can obtain remarkable margins over state-of-the-art domain adaptation methods.

Kokoelmat
  • Avoin saatavuus [37606]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen