Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning optimal k-space acquisition and reconstruction using physics-informed neural networks

Peng, Wei; Feng, Li; Zhao, Guoying; Liu, Fang (2022-09-27)

 
Avaa tiedosto
nbnfi-fe202301306406.pdf (4.631Mt)
nbnfi-fe202301306406_meta.xml (35.76Kt)
nbnfi-fe202301306406_solr.xml (38.03Kt)
Lataukset: 

URL:
https://doi.org/10.1109/CVPR52688.2022.02013

Peng, Wei
Feng, Li
Zhao, Guoying
Liu, Fang
Institute of Electrical and Electronics Engineers
27.09.2022

W. Peng, L. Feng, G. Zhao and F. Liu, "Learning Optimal K-space Acquisition and Reconstruction using Physics-Informed Neural Networks," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 20762-20771, doi: 10.1109/CVPR52688.2022.02013.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/cvpr52688.2022.02013
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301306406
Tiivistelmä

Abstract

The inherent slow imaging speed of Magnetic Resonance Image (MRI) has spurred the development of various acceleration methods, typically through heuristically undersampling the MRI measurement domain known as k-space. Recently, deep neural networks have been applied to reconstruct undersampled k-space data and have shown improved reconstruction performance. While most of these methods focus on designing novel reconstruction networks or new training strategies for a given undersampling pattern, e.g., Cartesian undersampling or Non-Cartesian sampling, to date, there is limited research aiming to learn and optimize k-space sampling strategies using deep neural networks. This work proposes a novel optimization framework to learn k-space sampling trajectories by considering it as an Ordinary Differential Equation (ODE) problem that can be solved using neural ODE. In particular, the sampling of k-space data is framed as a dynamic system, in which neural ODE is formulated to approximate the system with additional constraints on MRI physics. In addition, we have also demonstrated that trajectory optimization and image reconstruction can be learned collaboratively for improved imaging efficiency and reconstruction performance. Experiments were conducted on different in-vivo datasets (e.g., brain and knee images) acquired with different sequences. Initial results have shown that our proposed method can generate better image quality in accelerated MRI than conventional undersampling schemes in Cartesian and Non-Cartesian acquisitions.

Kokoelmat
  • Avoin saatavuus [37798]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen