Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal correction cost for object detection evaluation

Otani, Mayu; Togashi, Riku; Nakashima, Yuta; Rahtu, Esa; Heikkilä, Janne; Satoh, Shin’ichi (2022-09-27)

 
Avaa tiedosto
nbnfi-fe202301245374.pdf (13.36Mt)
nbnfi-fe202301245374_meta.xml (38.68Kt)
nbnfi-fe202301245374_solr.xml (36.18Kt)
Lataukset: 

URL:
https://doi.org/10.1109/CVPR52688.2022.02043

Otani, Mayu
Togashi, Riku
Nakashima, Yuta
Rahtu, Esa
Heikkilä, Janne
Satoh, Shin’ichi
Institute of Electrical and Electronics Engineers
27.09.2022

M. Otani, R. Togashi, Y. Nakashima, E. Rahtu, J. Heikkilä and S. Satoh, "Optimal Correction Cost for Object Detection Evaluation," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 21075-21083, doi: 10.1109/CVPR52688.2022.02043.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/cvpr52688.2022.02043
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301245374
Tiivistelmä

Abstract

Mean Average Precision (mAP) is the primary evaluation measure for object detection. Although object detection has a broad range of applications, mAP evaluates detectors in terms of the performance of ranked instance retrieval. Such the assumption for the evaluation task does not suit some downstream tasks. To alleviate the gap between downstream tasks and the evaluation scenario, we propose Optimal Correction Cost (OC-cost), which assesses detection accuracy at image level. OC-cost computes the cost of correcting detections to ground truths as a measure of accuracy. The cost is obtained by solving an optimal transportation problem between the detections and the ground truths. Unlike mAp, OC-cost is designed to penalize false positive and false negative detections properly, and every image in a dataset is treated equally. Our experimental result validates that OCscost has better agreement with human preference than a ranking-based measure, i.e., mAP for a single image. We also show that detectors’ rankings by OC-cost are more consistent on different data splits than mAP. Our goal is not to replace mAP with OC-cost but provide an additional tool to evaluate detectors from another aspect. To help future researchers and developers choose a target measure, we provide a series of experiments to clarify how mAP and OC-cost differ.

Kokoelmat
  • Avoin saatavuus [37658]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen