Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

AxIoU : an axiomatically justified measure for video moment retrieval

Togashi, Riku; Otani, Mayu; Nakashima, Yuta; Rahtu, Esa; Heikkilä, Janne; Sakai, Tetsuya (2022-09-27)

 
Avaa tiedosto
nbnfi-fe202301245396.pdf (2.471Mt)
nbnfi-fe202301245396_meta.xml (38.66Kt)
nbnfi-fe202301245396_solr.xml (36.66Kt)
Lataukset: 

URL:
https://doi.org/10.1109/CVPR52688.2022.02040

Togashi, Riku
Otani, Mayu
Nakashima, Yuta
Rahtu, Esa
Heikkilä, Janne
Sakai, Tetsuya
Institute of Electrical and Electronics Engineers
27.09.2022

R. Togashi, M. Otani, Y. Nakashima, E. Rahtu, J. Heikkilä and T. Sakai, "AxIoU: An Axiomatically Justified Measure for Video Moment Retrieval," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 21044-21053, doi: 10.1109/CVPR52688.2022.02040.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/cvpr52688.2022.02040
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301245396
Tiivistelmä

Abstract

Evaluation measures have a crucial impact on the direction of research. Therefore, it is of utmost importance to develop appropriate and reliable evaluation measures for new applications where conventional measures are not well suited. Video Moment Retrieval (VMR) is one such application, and the current practice is to use R@K, θ for evaluating VMR systems. However, this measure has two disadvantages. First, it is rank-insensitive: It ignores the rank positions of successfully localised moments in the top-K ranked list by treating the list as a set. Second, it binarizes the Intersection over Union (IoU) of each retrieved video moment using the threshold θ and thereby ignoring fine-grained localisation quality of ranked moments. We propose an alternative measure for evaluating VMR, called Average Max IoU (AxIoU), which is free from the above two problems. We show that AxIoU satisfies two important axioms for VMR evaluation, namely, Invariance against Redundant Moments and Monotonicity with respect to the Best Moment, and also that R@ K, θ satisfies the first axiom only. We also empirically examine how Ax-IoU agrees with R@K, θ, as well as its stability with respect to change in the test data and human-annotated temporal boundaries.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen