Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Federated learning based anomaly detection as an enabler for securing network and service management automation in beyond 5G networks

Jayasinghe, Suwani; Siriwardhana, Yushan; Porambage, Pawani; Liyanage, Madhusanka; Ylianttila, Mika (2022-07-08)

 
Avaa tiedosto
nbnfi-fe202301245347.pdf (333.0Kt)
nbnfi-fe202301245347_meta.xml (41.24Kt)
nbnfi-fe202301245347_solr.xml (34.43Kt)
Lataukset: 

URL:
https://doi.org/10.1109/eucnc/6gsummit54941.2022.9815754

Jayasinghe, Suwani
Siriwardhana, Yushan
Porambage, Pawani
Liyanage, Madhusanka
Ylianttila, Mika
Institute of Electrical and Electronics Engineers
08.07.2022

S. Jayasinghe, Y. Siriwardhana, P. Porambage, M. Liyanage and M. Ylianttila, "Federated Learning based Anomaly Detection as an Enabler for Securing Network and Service Management Automation in Beyond 5G Networks," 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Grenoble, France, 2022, pp. 345-350, doi: 10.1109/EuCNC/6GSummit54941.2022.9815754.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/eucnc/6gsummit54941.2022.9815754
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301245347
Tiivistelmä

Abstract

Network automation is a necessity in order to meet the unprecedented demand in the future networks and zero touch network architecture is proposed to cater such requirements. Closed-loop and artificial intelligence are key enablers in this proposed architecture in critical elements such as security. Apart from the arising privacy concerns, machine learning models can also face resource limitations. Federated learning is a machine learning-based technique that addresses both privacy and communication efficiency issues. Therefore, we propose a federated learning-based model incorporating the ZSM architecture for network automation. The paper also contains the simulations and results of the proposed multi-stage federated learning model that uses the UNSW-NB15 dataset.

Kokoelmat
  • Avoin saatavuus [37887]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen