Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A nonlinear autoregressive neural network for interference prediction and resource allocation in URLLC scenarios

Padilla, Christian; Hashemi, Ramin; Mahmood, Nurul Huda; Latva-aho, Matti (2021-12-07)

 
Avaa tiedosto
nbnfi-fe202301031281.pdf (631.3Kt)
nbnfi-fe202301031281_meta.xml (36.80Kt)
nbnfi-fe202301031281_solr.xml (32.86Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICTC52510.2021.9620845

Padilla, Christian
Hashemi, Ramin
Mahmood, Nurul Huda
Latva-aho, Matti
Institute of Electrical and Electronic Engineers
07.12.2021

C. Padilla, R. Hashemi, N. H. Mahmood and M. Latva-Aho, "A Nonlinear Autoregressive Neural Network for Interference Prediction and Resource Allocation in URLLC Scenarios," 2021 International Conference on Information and Communication Technology Convergence (ICTC), 2021, pp. 184-189, doi: 10.1109/ICTC52510.2021.9620845.

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICTC52510.2021.9620845
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202301031281
Tiivistelmä

Abstract

Ultra reliable low latency communications (URLLC) is a new service class introduced in 5G which is characterized by strict reliability (1–10 −5) and low latency requirements (1 ms). To meet these requisites, several strategies like overprovisioning of resources and channel-predictive algorithms have been developed. This paper describes the application of a Nonlinear Autoregressive Neural Network (NARNN) as a novel approach to forecast interference levels in a wireless system for the purpose of efficient resource allocation. Accurate interference forecasts also grant the possibility of meeting specific outage probability requirements in URLLC scenarios. Performance of this proposal is evaluated upon the basis of NARNN predictions accuracy and system resource usage. Our proposed approach achieved a promising mean absolute percentage error of 7.8 % on interference predictions and also reduced the resource usage in up to 15 % when compared to a recently proposed interference prediction algorithm.

Kokoelmat
  • Avoin saatavuus [38821]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen