Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Reinforcement Learning-Based Task Offloading Over In-Network Computing and Multi-Access Edge Computing

Ming, Zhao; Guo, Qize; Yu, Hao; Taleb, Tarik (2023-10-24)

 
Avaa tiedosto
nbnfioulu-202311293422.pdf (1.451Mt)
Lataukset: 

URL:
https://doi.org/10.1109/NaNA60121.2023.00054

Ming, Zhao
Guo, Qize
Yu, Hao
Taleb, Tarik
IEEE
24.10.2023

Ming, Z., Guo, Q., Yu, H., & Taleb, T. (2023). Deep reinforcement learning-based task offloading over in-network computing and multi-access edge computing. 2023 International Conference on Networking and Network Applications (NaNA), 281–286. https://doi.org/10.1109/NaNA60121.2023.00054

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/NaNA60121.2023.00054
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202311293422
Tiivistelmä
Abstract

With the blooming of information technology and network applications/services, emerging multi-access edge computing (MEC) and in-network computing (INC) are regarded as key computing paradigms to support time-sensitive tasks and requests by task offloading. Existing studies concerning task offloading seldom considered the combinations of MEC, INC, and cloud computing. In this paper, we explore INC-enhanced task offloading in MEC networks and design a three-layer task offloading network architecture, which consists of not only user equipment, edge servers, and cloud, but also network elements like routers/switches. We focus on reducing the system latency and energy consumption (EC) and formulate the optimization problem as minimizing the weighted sum of these two indicators. To solve this problem, we propose a deep reinforcement learning-based framework and creatively map the actions of the agent to the offloading policies and resource allocation strategies for determining these two indicators simultaneously. Simulation results show that the proposed INC-enhanced task offloading framework achieves fast convergence speed with double deep Q-network and outperforms other baselines in reducing the system latency and EC.
Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen