Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy Efficiency Optimization for Subterranean LoRaWAN Using A Reinforcement Learning Approach: A Direct-to-Satellite Scenario

Lin, Kaiqiang; Asad Ullah, Muhammad; Alves, Hirley; Mikhaylov, Konstantin; Hao, Tong (2023-10-26)

 
Avaa tiedosto
nbnfioulu-202311273387.pdf (1.074Mt)
Lataukset: 

URL:
https://doi.org/10.1109/LWC.2023.3327833

Lin, Kaiqiang
Asad Ullah, Muhammad
Alves, Hirley
Mikhaylov, Konstantin
Hao, Tong
IEEE
26.10.2023

K. Lin, M. A. Ullah, H. Alves, K. Mikhaylov and T. Hao, "Energy Efficiency Optimization for Subterranean LoRaWAN Using a Reinforcement Learning Approach: A Direct-to-Satellite Scenario," in IEEE Wireless Communications Letters, vol. 13, no. 2, pp. 308-312, Feb. 2024, doi: 10.1109/LWC.2023.3327833.

https://rightsstatements.org/vocab/InC/1.0/
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/lwc.2023.3327833
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202311273387
Tiivistelmä
Abstract:

The integration of subterranean LoRaWAN and non-terrestrial networks (NTN) delivers substantial economic and societal benefits in remote agriculture and disaster rescue operations. The LoRa modulation leverages quasi-orthogonal spreading factors (SFs) to optimize data rates, airtime, coverage and energy consumption. However, it is still challenging to effectively assign SFs to end devices for minimizing co-SF interference in massive subterranean LoRaWAN NTN. To address this, we investigate a reinforcement learning (RL)-based SFs allocation scheme to optimize the system’s energy efficiency (EE). To efficiently capture the device-to-environment interactions in dense networks, we proposed an SFs allocation technique using the multi-agent dueling double deep Q-network (MAD3QN) and the multi-agent advantage actor-critic (MAA2C) algorithms based on an analytical reward mechanism. Our proposed RL-based SFs allocation approach evinces better performance compared to four benchmarks in the extreme underground direct-to-satellite scenario. Remarkably, MAD3QN shows promising potentials in surpassing MAA2C in terms of convergence rate and EE.
Kokoelmat
  • Avoin saatavuus [38670]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen